Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 47: 83-88, sept. 2020. graf, ilus
Article in English | LILACS | ID: biblio-1253097

ABSTRACT

BACKGROUND: L-tert-Leucine has been widely used in pharmaceutical, chemical, and other industries as a vital chiral intermediate. Compared with chemical methods, enzymatic methods to produce L-tert-leucine have unparalleled advantages. Previously, we found a novel leucine dehydrogenase from the halophilic thermophile Laceyella sacchari (LsLeuDH) that showed good thermostability and great potential for the synthesis of L-tertleucine in the preliminary study. Hence, we manage to use the LsLeuDH coupling with a formate dehydrogenase from Candida boidinii (CbFDH) in the biosynthesis of L-tert-leucine through reductive amination in the present study. RESULT: The double-plasmid recombinant strain exhibited higher conversion than the single-plasmid recombinant strain when resting cells cultivated in shake flask for 22 h were used. Under the optimized conditions, the double-plasmid recombinant E. coli BL21 (pETDute-FDH-LDH, pACYCDute-FDH) transformed 1 mol·L-1 trimethylpyruvate (TMP) completely into L-tert-leucine with greater than 99.9% ee within 8 h. CONCLUSIONS: The LsLeuDH showed great ability to biosynthesize L-tert-leucine. In addition, it provided a new option for the biosynthesis of L-tert-leucine.


Subject(s)
Leucine Dehydrogenase/metabolism , Bacillales/enzymology , Leucine/biosynthesis , Temperature , Recombinant Proteins , Escherichia coli , Hydrogen-Ion Concentration
2.
Braz. j. microbiol ; 40(4): 734-746, Oct.-Dec. 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-528155

ABSTRACT

Bitespiramycin, a group of 4"-O-acylated spiramycins with 4"-O-isovalerylspiramycins as the major components, was produced by recombinantspiramycin-producing strain Streptomyces spiramyceticus harboring a 4"-O-acyltransferase gene. The experiment was initially performed in synthetic medium with 0.5 g l-1 Valine, Isoleucine or Leucine feeding at 36 h cultivation. When valine was fed, the biological titer of bitespiramycin was 45.3 percent higher than that of the control group, but the relative content of total isovalerylspiramycin components decreased by 22.5 percent. In the case of ilecine, the biological titer of bitespiramycin and the total isovalerylspiramycins alone were 85 percent and 72.1 percent of the control group, respectively. In contrast, the relative content of other acylated spiramycins increased by 54.41 percent. However, leucine feeding increased the relative content of total isovalerylspiramycins by 41.9 percent while the biological titer of bitespiramycin was nearly equal to that of the control group. The improvement effect of leucine on the biosynthesis of isovalerylspiramycins was further confirmed by feeding of 2.0 g l-1 leucine to the culture with complex medium. After batch feeding with a total amount of 2.0 g l-1 leucine to the culture from 70 h to 90 h, the biological titer of bitespiramycin was almost unreduced, and the final relative content of total isovalerylspiramycins increased from 31.1 percent to 46.9 percent.


Subject(s)
Amino Acids/analysis , Amino Acids/biosynthesis , Spiramycin/analysis , Spiramycin/biosynthesis , Leucine/analysis , Leucine/biosynthesis , Protein Biosynthesis , Methods , Methods
SELECTION OF CITATIONS
SEARCH DETAIL